
Partial Differential Equations Spring 2020

A Journey Through Image Inpainting With Partial Differential Equations
Created by Mark Goldwater and Jonah Spicher

Content:
• Inpainting with Heat Equation
• Convolutional Kernels
• Discrete Calculus
• Calculus of Variations
• Inpainting inspired by professional restorator approach

References:
• Scale-Space and Edge Detection Using Anisotropic Diffusion - Perona and Malik
• Image Inpainting with the Heat Equation - Kalish
• Math 257: Finite Difference Methods
• Image Inpainting - Sapio and Ballester
• Digital image processing: p054 - Anisotropic Diffusion (Sapiro)
• Digital image processing: p053- Calculus of Variations (Sapiro)
• create image and mask.m from Parisotto and Schoenlieb at Cambridge

Background

According to a Mathworks article written by Carola-Bibiane Schönlieb, “Inpainting, or image interpolation,
is a process used to reconstruct missing parts of images. Artists have long used manual inpainting to
restore damaged paintings. Today, mathematicians apply partial differential equations (PDEs) to automate
image interpolation. The PDEs operate in much the same way that trained restorers do: They propagate
information from the structure around a hole into the hole to fill it in.”

Figure 1: Example of restored image using inpainting
techniques.

Above in 1, you can see an example of a photograph with missing information (pictured on the left)
and its restoration using inpainting techniques (pictured on the right). The pure PDE methods behind

Page 1

http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf
http://kris.kalish.net/wp-content/uploads/2010/01/inpainting2.pdf
http://kris.kalish.net/wp-content/uploads/2010/01/inpainting2.pdf
https://drive.google.com/file/d/1cnqNWoM033NZsSM7voOwYMtLdg1bsxa9/view?usp=sharing
https://www.youtube.com/watch?v=B_TiVX7zN8U
https://www.youtube.com/watch?v=atqfuOn0UEI
https://github.com/simoneparisotto/MATLAB-Python-inpainting-codes/blob/master/matlab/lib/create_image_and_mask.m
https://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digital-image-restoration.html


A Journey Through Image Inpainting With Partial Differential Equations

image inpainting are sometimes accompanied with machine learning algorithms; however, for the purpose of
this problem set, we will stick with pure PDE inpainting techniques. To start, we are going to apply the
well-renown heat equation to the inpainting problem.

Inpainting Using the Heat Equation

Recall that the one-dimensional heat equation in continuous space and time along a wire of length L
with the initial condition f(x) and Dirichlet boundary conditions is defined as follows.

ut = kuxx 0 ≤ x ≤ L, 0 ≤ t
u(x, 0) = f(x) 0 ≤ x ≤ L
u(0, t) = u(L, 0) = 0 0 ≤ t.

Also recall that the same situation with a Neumann boundary condition, which defines the flux of
heat on the boundaries of the wire is written as follows.

ut = kuxx 0 ≤ x ≤ L, 0 ≤ t
u(x, 0) = f(x) 0 ≤ x ≤ L
ux(0, t) = ux(L, 0) = C 0 ≤ t, C ∈ R.

We have learned various methods to solve the heat equation, including separation of variables and
convolution with the natural solution, but in order to use a computer to solve the heat equation we
need to apply the method of finite differences to attractively produce a solution among a discrete
version of space and time. We have previously derived this iterative solution to be the following.

um+1
j = umj + s(umj−1 − 2umj + umj+1) 0 ≤ s ≤ 1

2

1. To start, imagine a 1 dimensional image of a solid black bar, as shown below. The center portion of
the bar has been obscured from x = 0 to x = L.

In order to most accurately get values at the edge of our boundary, we should consider the ”heat
flux” in the image surrounding our boundary. To find this, we find the difference in the value of
the two pixels outside of our boundary. For example, if our boundary is at L, then we would find
u(L+ 1,m)− u(L+ 2,m).

Assuming that ux(0,m) = ux(−1,m) is a more accurate approximation than assuming that u(0,m) =
u(−1,m), so Neumann boundary conditions allow our inpainting algorithm to fill in gradients more
accurately.

(a) Use a centered difference equation

fx(x, t) =
f(x+ ∆x,m)− f(x−∆x,m)

2∆m

to rewrite the Neumann boundary conditions at x = 0 and x = L for some heat flux ux = C.

(b) Simplify these expressions to get an expression for u(−∆x,m) and u(N + ∆x,m).

(c) u(−∆x,m) and u(L+ ∆x,m) are the values on u of one behind the left-hand boundary of 0 and
and one beyond the right-hand boundary of L.

Page 2



A Journey Through Image Inpainting With Partial Differential Equations

Using the discretized heat equation in the information box above, come up with two equations
to calculate both um+1

0 and um+1
L

2. Now, lets begin to see how we can apply these discretized equations to a MATLAB implementation of
the obfuscated bar problem.

(a) Write an expression for the value of an arbitrary pixel j at time m+1 using the discretized version
of the heat equation for when 0 < j < L.

(b) Using the starter code here, insert your expressions for Im+1
j for the endpoints of the inpainting

region, from Problem 1 Part c, and for the inside of the inpainting region from the previous
part of this problem. Set s = 1

2 . (Note: the actual bar in the code is a two dimensional image, but
we are treating each column as one pixel, which makes it one dimensional and not just a singular
line of pixels that you would have to squint at to see).

(c) Can you think of situations where the heat equation would be less effective? What are potential
limitations of the heat equation in image inpainting?

Page 3

https://drive.google.com/uc?export=download&id=1V8QDdwMi2cwpYFwOTFMh9bJngX7QifLf


A Journey Through Image Inpainting With Partial Differential Equations

Image Inpainting Via Information Propagation Along Isophotes

This next image inpainting technique is the final one that we are going to go over. It is inspired by
the method that actual resortators utilize when fixing damaged photos or art pieces. It is described
using the following equation:

It = ∇(∆I) · ∇⊥I

This equation may be a little intimidating at first, but let’s try and understand what it achieves
qualitatively.

The creators of this method have chosen the Laplacian of the image ∆I as a rough estimation of
smoothness of the image. Then we calculate the change in smoothness across the image by taking
the gradient of this smoothness measurement which corresponds to ∇(∆I) in our equation.
Then, lastly, we want to project this change in smoothness along the edges that are present in
our image, for these are the contours where we want this quantity to be zero (shown in Figure
4). Recall, that the gradient is always perpendicular to contours, so we want to project ∇(∆I) in
the direction of the perpendicular gradient, giving us the right-hand side of the equation ∇(∆I) ·∇⊥I

In order to apply this equation to an image, we then set it equal to It and run the simulation until
this quantity is close to zero. Setting the quantity on the right to zero ensures that the image is
smooth along its contours, which only happens when the image is filled in.

Figure 2: We want to propagate image smooth-
ness information in the direction of the perpendicu-
lar contour as shown in the figure.

Note: To ensure a correct evolution of the direction field, a diffusion process is interleaved with the
image inpainting process. The diffusion process we will use is called anisotropic diffusion and will be
described later on in this problem.

Page 4



A Journey Through Image Inpainting With Partial Differential Equations

Before we start you are going to need to acquire some new tools in order to be able to successfully
implement this algorithm such that it will run with sufficient efficiency. The first of these is convolutional
kernels for performing operations such as the gradient and Laplacian. The second of these is anisotropic
diffusion which we have implemented for you to use in the algorithm and will explain in the next proble.

1. Discrete time convolution can be used to quickly and easily find different derivatives of an image. This
technique will be helpful to calculate the terms in the discrete PDE used for inpainting. For example,
the kernel [0 -1 1] (which we will call a can be used to find the forward difference approximation for the
first derivative of a function. When y[k] = a ∗ x[k], discrete convolution means that we are effectively
setting y[k] = 0 · x[k − 1]− x[k] + x[k + 1].

(a) Using the same principle, come up with a kernel which gives a centered difference approximation
for the second derivative: xtt[t] ≈ x[t− 1]− 2 · x[t] + x[t+ 1].

(b) Let’s move to two dimensions. Using the answer to part a, find a kernel which approximates
the Laplacian of a 2D function I (like an image!). Note that this kernel will be a 3x3 matrix,
because you will need the second derivative in both the x direction and the y direction. (Hint:
Try writing out a discrete approximation of the Laplacian of I(x, y) using the centered difference
approximation for the second derivative).

(c) We are also going to need the gradient of the image. The gradient is a little bit trickier, because
its result is a vector field, which means our convolution alone does not give us what we want.
However, we can write an expression for the x coordinate (Ix) and the y coordinate (Iy) of the
gradient. Write these expressions using discrete approximations for the first derivative.

2. Now let’s start implementing the inpainting algorithm! Download restore inpaint algorithm.m,
guillermo inpainting.m, anisodiff2D.m, and ws.mat.

guillermo inpaint.m iteratively calls functions defined in two other files, ws.mat contains the original
image, the disrupted image, and the mask used to disrupt the image, and anisodiff2D.m is used to
smooth the image (don’t worry about that for now we’ll go over it in the next problem. It helps to
evolve the field correctly).

Finally, restore inpaint algorithm.m is the file you will be editing. This file implements a discrete
version of the main inpainting PDE explained above. Lets go through it step-by-step.

(a) After loading ws.mat into your MATLAB workspace use the imshow() function to look at the
variables u, orig, and mask. What are they, and how do they relate to each other?

(b) The matlab function imfilter() takes three parameters. The first is the image to be modified,
the second is the kernel to be used, and the third is the specific functionality you want to use.
This should just be set to ’conv’ for convolution.

i. First, fill in the kernels you found in problem 1 of this section. A few have been done for
you. (These are very similar to the gradient kernel you found, but use either a centered or
backwards approximation for the first derivative, for example, xt ≈ x[t]− x[t− 1] instead of
xt ≈ x[t+ 1]− x[t]).

ii. Now, fill in the expressions for the various derivatives of the image. For each one, use imfilter
and the relevant kernel. For the first three, the image you are modifying is called diff im. A
few notes:
- When using diff im, you only want the current color slice. The code explains this in more
detail.
- In order to get the gradient of the Laplacian, you will need to modify the variable lap using
the kernels provided for the Laplacian.
- Don’t worry about the backwards difference kernels.

(c) Now that we know all of the relevant derivatives of the image, it is time to stat putting them
together into our PDE.

Page 5

https://drive.google.com/uc?export=download&id=14buY_qPH1ZGksaZrRXOgaej-d91M3F-p
https://drive.google.com/uc?export=download&id=13gAQ19Xm9j1MLLg65FUBTptJrhYdJSES
https://drive.google.com/uc?export=download&id=1vjBmQbiiQQrhT6MCZlYU1_kDbM-tYOOu
https://drive.google.com/uc?export=download&id=1l4mB5SlVG0dKH-vErh26VwHERVO8zA6X


A Journey Through Image Inpainting With Partial Differential Equations

The gradient of the image is actually not the vector we want. In order to propagate information
along contour lines, in the direction where the image doesn’t change, we want to use the vector
which points perpendicular to the gradient (you can get this with a rotation matrix, if you want).
Also, we want to normalize it, as we don’t care how big the gradient is, we just want to know its
direction. This vector can be written as:

N̂ =
∇⊥I
‖∇I‖

=

[
−Iy
Ix

]
· 1√

I2x + I2y + ε

The ε is added to prevent division by zero in regions where the image is perfectly smooth (so the
norm of the gradient is equal to zero). Use the value ε = 0.1. Here, Iy is what is called gradY in
the code and Ix is called gradX.

Using this equation and the derivatives you calculated in part b, write an expression for N̂ in the
code (Note that in the code, you need to write its x component and its y component separately).

(d) Finally, we have the two components described by the PDE. There is still some work to be done to
update the image, but you can plug in what you found. We will define a variable β = ∇(∆I) · N̂ .
This variable tells us how much the smoothness of the image is disrupted when we follow the lines
along which it shouldn’t change. If the region wasn’t missing, this should be zero. Using the x
and y coordinates of both N̂ and the gradient of the Laplacian, write an expression for β using
the x and y components of lapd and N hat.

(e) Now that the code is filled in, try calling the guillermo inpaint() function from the matlab
command prompt. It takes an image (u), some number of iterations to perform, and the mask
(mask). Try 800 iterations. Does it work?

What this code is doing is using the beta variable you found (approximately a measure of how
rough the image is along its contour lines) as the time derivative of the image, and then advancing
time. This lets information flow in to the deleted region along lines, filling it back in. Here is a
fun picture which demonstrates roughly what that means.

Figure 3: The color flows in towards the center, but
only in the direction where the color is staying the same.

Page 6



A Journey Through Image Inpainting With Partial Differential Equations

Anisotropic Diffusion

If we think back to the beginning of the problem set where we inpainted using the heat equation,
we were performing what is know as isotropic diffusion. This approach iteratively averaged all the
pixels in the region we were trying to inpaint which was the reason that this method only worked
when the boundaries were homogeneous. If they were not, the process would eventually average
across edges in the image which is not useful for inpainting.

As a result the diffusion step that we interweave in the Information Propagation Along Isophotes
method shown in the last problem is called Anisotropic Diffusion. This method of diffusion is also
iterativly applied, but using the following PDE (which is for a 2D image)

It = div(c(x, y, t)∇I) = c(x, y, t)∇I +∇c · ∇I

where c(x, y, t) is a scalar field which scales the gradient of the image near edges so it does not diffuse
in these areas.

So, the main take-away for this in the context of the last image inpainting algorithm
is that we apply two iterations of this diffusion after 15 iterations of the inpainting
algorithm in order to ensure a correct evolution of the field. You can see this applied
in the guillermo inpainting.m file.

Now for the rest of this problem, we will derive the anisotropic diffusion technique using Calculus of
Variations which according to Wikipedia is “...a field of mathematical analysis that uses variations,
which are small changes in functions and functionals, to find maxima and minima of functionals:
mappings from a set of functions to the real numbers.” In other words: finding function that
minimize an objective function.

One tool in this field of mathematics is the Euler-Lagrange Equation:(
∂

∂u
− d

dx

∂

∂ux

)
F (u, ux) = 0

Whose solution will find extrema values of integrals of the following form:∫
F (u, ux)dx

1. Let’s consider a classic example in the realm of Calculus of Variations. Consider a situation where we
have a particle at position x0 at time t0 and at position x1 at time t1 as shown below.

Figure 4: Position vs. Time graph for a particle for
which the position is known at t0 and t1.

Page 7

https://en.wikipedia.org/wiki/Calculus_of_variations


A Journey Through Image Inpainting With Partial Differential Equations

By applying the Euler-Lagrange equation, derive a function that represents the shortest path between
these two points that the particle takes (Hint: recall that the length of a curve u can be calculated
using the following integral:

∫ x1

x0

√
1 + u2xdx)?

Recall back to your most recent calculus class (probably) and the concept of gradient descent.
Let’s review this quickly. Say we have a function f(x) which we want to apply gradient descent
to in order to find a local minimum. We can determine the “steps” we need to take to work
towards this minimum by taking the derivative of this function after it experiences a small
perturbation and set it equal to zero as the perturbation becomes infinitesimal, for this defines
a local maximum or minimum.

∀n : lim
ε→0

(
df(x+ εn

dε

)
⇔ ∀n : fx(x)n⇔ fx = 0

The conclusion reached by the above math might seem trivial. Of course we need the derivative
to be zero at a local minimum. But now we can write the following differential equation:

xt = −fx(x)

which allows us to change x in the opposite direction of the derivative of the function allowing
us to descend the gradient in the following fashion:

xt+1 = xt − dtfx(xt)

where dt is the rate at which you are descending or the “step size”. Exciting!

2. Write out the discrete differential equation used to perform gradient descent on the quadratic function
f(x) = x2. Given that x0 = 3, calculate x1, x2, and x3.

Looking back at the Euler-Lagrange equation, we derive it in a similar way to how we just
derived gradient descent except instead of slowly stepping with a point, we are stepping with a
function. Let’s walk through it!

Let’s define the integral we are trying to minimize as follows:

E(u(x)) =

∫
F (u, ux)dx

Then, this time the perturbation will be the addition of an entire function because now we are
trying to find a minimizing function. So if we let ũ(x) be the perturbed function we get

ũ(x) = u(x) + εn(x)

Thinking analogously to the derivation of gradient descent, we now want to find

∀n(x) : lim
ε→0

(
d

dε

∫
F (ũ, ũx)dx

)
= 0

which eventualy leads us to the following conclusion (which is left as an exercise for the reader)

δE(u)

δu
=

(
∂

∂u
− d

dx

∂

∂ux

)
F (u, ux)

It’s the Euler-Lagrange equation! We can then cary out the gradient descent process using

ut = − δE(u)
δu

Page 8



A Journey Through Image Inpainting With Partial Differential Equations

3. Read the Motivation section of the anisotropic diffusion Wikipedia page to see how the initial anisotropic
diffusion equation given at the beginning of this section was derived. Nothing to do here, just read!

4. Look at Equation 7 in the Original paper for anisotropic diffusion, otherwise known as Perona-Malik
diffusion, which is the discretized version of this type of diffusion.

(a) Derive this discretized version from the original equation.

(b) Take a look at the implementation in anisodiff2D.m and make sense of it using your knowledge
of convolutional kernel tricks from earlier in the problem set and part (a) of this problem.

Page 9

https://en.wikipedia.org/wiki/Anisotropic_diffusion
http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf
https://drive.google.com/uc?export=download&id=1vjBmQbiiQQrhT6MCZlYU1_kDbM-tYOOu

