
Partial Differential Equations Spring 2020

A Journey Through Image Inpainting With Partial Differential Equations - Solutions
Created by Mark Goldwater and Jonah Spicher

Content:
• Inpainting with Heat Equation
• Convolutional Kernels
• Discrete Calculus
• Calculus of Variations
• Inpainting inspired by professional restorator approach

References:
• Scale-Space and Edge Detection Using Anisotropic Diffusion - Perona and Malik
• Image Inpainting with the Heat Equation - Kalish
• Math 257: Finite Difference Methods
• Image Inpainting - Sapio and Ballester
• Digital image processing: p054 - Anisotropic Diffusion (Sapiro)
• Digital image processing: p053- Calculus of Variations (Sapiro)
• create image and mask.m from Parisotto and Schoenlieb at Cambridge

Inpainting Using the Heat Equation

1. To start, imagine a 1 dimensional image of a solid black bar, as shown below. The center portion of
the bar has been obscured from x = 0 to x = L.

In order to most accurately get values at the edge of our boundary, we should consider the ”heat
flux” in the image surrounding our boundary. To find this, we find the difference in the value of
the two pixels outside of our boundary. For example, if our boundary is at L, then we would find
u(L+ 1,m)− u(L+ 2,m).

Assuming that ux(0,m) = ux(−1,m) is a more accurate approximation than assuming that u(0,m) =
u(−1,m), so Neumann boundary conditions allow our inpainting algorithm to fill in gradients more
accurately.

(a) Use a centered difference equation

fx(x, t) =
f(x+ ∆x,m)− f(x−∆x,m)

2∆m

to rewrite the Neumann boundary conditions at x = 0 and x = L for some heat flux ux = C.

Solution: Replacing the function f(x, t) with the function u(x, t), which represents the
region we are inpainting, and evaluating it at x = 0 and x = L will give the solution to
this problem.

ux(0, t) = C ≈ u(0 + ∆x,m)− u(0−∆x,m)

2∆m
=
u(∆x,m)− u(−∆x,m)

2∆m

ux(L, t) = C ≈ u(L+ ∆x,m)− u(L−∆x,m)

2∆m

Page 1

http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf
http://kris.kalish.net/wp-content/uploads/2010/01/inpainting2.pdf
http://kris.kalish.net/wp-content/uploads/2010/01/inpainting2.pdf
https://drive.google.com/file/d/1cnqNWoM033NZsSM7voOwYMtLdg1bsxa9/view?usp=sharing
https://www.youtube.com/watch?v=B_TiVX7zN8U
https://www.youtube.com/watch?v=atqfuOn0UEI
https://github.com/simoneparisotto/MATLAB-Python-inpainting-codes/blob/master/matlab/lib/create_image_and_mask.m


A Journey Through Image Inpainting With Partial Differential Equations

(b) Simplify these expressions to get an expression for u(−∆x,m) and u(L+ ∆x,m).

Solution: Solving these expressions for the u(−∆x,m) and u(L+ ∆x,m) terms gives us
the following two equations.

u(−∆x,m) = u(∆x,m)− 2C∆m

u(L+ ∆x,m) = u(L−∆x,m) + 2C∆m

(c) u(−∆x,m) and u(L + ∆x,m) are the values on u one behind the left-hand boundary of 0 and
and one beyond the right-hand boundary of L.

Using the discretized heat equation in the information box above, come up with two equations
to calculate both um+1

0 and um+1
L

Solution: The key here is to apply the discretized version of the heat equation which we
have previously derived: um+1

j = umj + s(umj+1 − 2umj + umj+1). If we setup two equations

with um+1
0 and um+1

L on the left-hand side respectively as shown here,

um+1
0 = um0 + s(um1 − 2um0 + um−1)

um+1
L = umL + s(umL+1 − 2umL + umL−1)

we can take our equations for u(−∆x,m) and u(L + ∆x,m) from the previous part and
substitute them in for um−1 and umL+1 respectively to yield the following two equations.

um+1
0 = um0 + s(2um1 − 2um0 − 2C∆m)

um+1
L = umL + s(2C∆m− 2umL + 2umL−1)

2. Now, lets begin to see how we can apply these discretized equations to a MATLAB implementation of
the obfuscated bar problem.

(a) Write an expression for the value of an arbitrary pixel j at time m+1 using the discretized version
of the heat equation for when 0 < j < L.

Solution: This is simply the discretized heat equation that we have previously derived.

um+1
j = umj + s(umj+1 − 2umj + umj+1)

(b) Using the starter code here, insert your expressions for Im+1
j for the endpoints of the inpainting

region, from Problem 1 Part c, and for the inside of the inpainting region from the previous
part of this problem. Set s = 1

2 . (Note: the actual bar in the code is a two dimensional image, but
we are treating each column as one pixel, which makes it one dimensional and not just a singular
line of pixels that you would have to squint at to see).

Solution: Download the solution here

(c) Can you think of situations where the heat equation would be less effective? What are potential
limitations of the heat equation in image inpainting?

Page 2

https://drive.google.com/uc?export=download&id=1V8QDdwMi2cwpYFwOTFMh9bJngX7QifLf
https://drive.google.com/uc?export=download&id=1U98Uhl8XBavXCa8MXnOdOOWnV_g9fzTp


A Journey Through Image Inpainting With Partial Differential Equations

Solution: This approach works well only when the areas surrounding each hole are ho-
mogeneous. When the hole spans a sharp edge, the edge pixels are diffused, causing the
edge to be lost in the restored section as seen in the subsequent figure

Figure 1: Left: An image of an edge with
a hole. Right: the same image reconstructed
using the heat equation.

(Both this solution text and figure are from this Mathworks article.)

Image Inpainting Via Information Propagation Along Isophotes

1. (a) The kernel is [1 -2 1]. If the two is lined up over x[t], then the discrete convolution a ∗ x[t] will be
x[t− 1]− 2x[t] + x[t+ 1], which matches our equation.

(b) This kernel is a 2D 3x3 matrix: 0 1 0
1 −4 1
0 1 0


We can write a discrete approximation of the Laplacian by using two approximations for the
second derivative:

Ixx + Iyy ≈ I[x− 1, y]− 2I[x, y] + I[x+ 1, y] + I[x, y − 1]− 2I[x, y] + I[x, y + 1]

Then, if we imagine placing the center of our matrix over I[x, y], we can fill in the coefficients.

(c) This is similar to problem a, but with a different approximation and 2D matrices.

∇I =

[
Ix
Iy

]
≈
[
I[x+ 1, y]− I[x, y]
I[x, y + 1]− I[x, y]

]
This gives the two kernels: 0 0 0

0 −1 1
0 0 0


0 1 0

0 −1 0
0 0 0


2. (a) orig is the image we want to recover. You can use it to compare the results of your algorithm to

the correct image. u is the image with a region missing, which requires inpainting. Finally, the
mask covers the missing region, and is used to tell the code which part of the image to update.

(b) i. When you are done, lines 18, 19, and 20 should look like this:

hL = [0 1 0;1 -4 1; 0 1 0];

hX = [0 0 0; 0 -1 1; 0 0 0];

hY = [0 1 0; 0 -1 0; 0 0 0];

Page 3

https://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digital-image-restoration.html


A Journey Through Image Inpainting With Partial Differential Equations

ii. Lines 44 - 48:

lap = imfilter(diff_im(:,:,c),hL,'conv');

gradX = imfilter(diff_im(:,:,c),hX,'conv');

gradY = imfilter(diff_im(:,:,c),hY,'conv');

dlapX = imfilter(lap,hDX,'conv');

dlapY = imfilter(lap,hDY,'conv');

(c) Simply replace Iy with gradY, Ix with gradX, and ε with 0.1. This gives the following for lines
56 and 57.

N_hatX = -gradY ./ sqrt(gradX.^2 + gradY.^2 + 0.1);

N_hatY = gradX ./ sqrt(gradX.^2 + gradY.^2 + 0.1);

(d) Since β is the dot product of two vectors:

beta = N_hatX.*dlapX + N_hatY.*dlapY;

(e) The function call you want specifically is:

guillermo_inpaint(u, 800, mask).

The result you get should look as follows:

Figure 2: Original image on the left and inpainted
image on the right.

Anisotropic Diffusion

1. Let’s consider a classic example in the realm of Calculus of Variations. Consider a situation where we
have a particle at position x0 at time t0 and at position x1 at time t1 as shown below.

Page 4



A Journey Through Image Inpainting With Partial Differential Equations

Figure 3: Position vs. Time graph for a particle for
which the position is known at t0 and t1.

By applying the Euler-Lagrange equation, derive a function that represents the shortest path between
these two points that the particle takes (Hint: recall that the length of a curve u can be calculated
using the following integral:

∫ x1

x0

√
1 + u2xdx)?

Solution: The integral we are trying to optimize when where F (u, ux) =
√

1 + u2x is∫ x1

x0

√
1 + u2xdx which is the length of the curve ux from x0 to x1!

Applying the Euler-Lagrange equation to F(u,ux)heregivesusthefollowing

uxx

(1 + u2x)
3
2

= 0

In order for this to be true:

uxx = 0⇒ ux = a⇒ u(x) = ax+ b

Where a and b are constants. Thus we have proven what we already know: the shortest path
between two points is a line drawn between them.

2. Write out the discrete differential equation used to perform gradient descent on the quadratic function
f(x) = x2. Given that x0 = 3, calculate x1, x2, and x3.

Solution: If f(x) = x2, then fx(x) = 2x. Knowing this, the difference equation to perform
gradient descent is as follows

xt+1 = xt − dt(2xt)

Given the starting point x0 = 3, we can calculate the first three time steps from here as follows
(with dt = 0.1

x1 = 2.4 = 3− 0.1(2(3))

x2 = 1.92 = 2.4− 0.1(2(2.4))

x3 = 1.536 = 1.92− 0.1(2(1.92))

If we were to keep iterating we would eventually find the local minimum of xt = 0.

3. Read the Motivation section of the anisotropic diffusion Wikipedia page to see how the initial anisotropic
diffusion equation given at the beginning of this section was derived. Nothing to do here, just read!

Page 5

https://en.wikipedia.org/wiki/Anisotropic_diffusion


A Journey Through Image Inpainting With Partial Differential Equations

Solution: N/A

4. Look at Equation 7 in the Original paper for anisotropic diffusion, otherwise known as Perona-Malik
diffusion, which is the discretized version of this type of diffusion.

(a) Derive this discretized version from the original equation.

Solution: The original version of the equation provided is It = div(c(x, y, t)∇I) =
c(x, y, t)∇I + ∇c · ∇I. Keep in mind that what we are trying to calculate here is It+1

i,j ,
the image at every pixel at the next time step. in order to do this we take the strategy
that the paper took and take the current image at time t, (Iti,j), and add a four-neighbor
discretization of the Laplacian operator on I, each scaled by its appropriate constant as
determined by the scalar field c(x, y, t). It is clear looking at the original equation that
because the Laplacian is the divergence of the gradient, what we have is a scaled Laplacian.
This gives us the final result.

It+1
i,j = Iti,j + λ[cN · ∇NI + cS · ∇SI + cE · ∇EI + cW · ∇W I]

Note that ∇N,S,E,W are not gradient operators, but nearest neighbor differences such that

∇NIi,j ≡ Ii−1,j − Ii,j
∇SIi,j ≡ Ii+1,j − Ii,j
∇EIi,j ≡ Ii,j+1 − Ii,j
∇W Ii,j ≡ Ii,j−1 − Ii,j

and cN,S,E,W is the chosen smoothing function evaluated with the input of its respective
directional differences. If it’s still not clear why this is the correct solution, try compar-
ing it to how you came up with the Laplacian convolutional Kernel. The equation for
a discretized Laplacian in two dimensions should look pretty similar to this after some
substitutions with the nearest neighbor difference operators.

(b) Take a look at the implementation in anisodiff2D.m and make sense of it using your knowledge
of convolutional kernel tricks from earlier in the problem set and part (a) of this problem.

Solution: N/A

Page 6

http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf
https://drive.google.com/uc?export=download&id=1vjBmQbiiQQrhT6MCZlYU1_kDbM-tYOOu

